
A COMPUTATIONAL FRAMEWORK FOR
GENERATING SIZING FUNCTION IN ASSEMBLY 
MESHING

William Roshan Quadros*, Ved Vyas*, Mike Brewer+, Steven James 
Owen+, Kenji Shimada*

*Dept. of Mechanical Engineering, Carnegie Mellon University, Pitts-
burgh, PA, 15213, USA 

+Sandia National Laboratories1, Albuquerque, NM, 871850, USA 

ABSTRACT 

This paper proposes a framework for generating sizing function in mesh-
ing assemblies.  Size control is crucial in obtaining a high-quality mesh
with a reduced number of elements, which decreases computational time
and memory use during mesh generation and analysis.  This proposed 
framework is capable of generating a sizing function based on geometric 
and non-geometric factors that influence mesh size.  The framework con-
sists of a background octree grid for storing the sizing function, a set of 
source entities for providing sizing information based on geometric and 
non-geometric factors, and an interpolation module for calculating the siz-
ing on the background octree grid using the source entities.  Source entities
are generated by performing a detailed systematic study to identify all the 
geometric factors of an assembly.  Disconnected skeletons are extracted 
and used as tools to measure 3D-proximity and 2D-proximity, which are 
two of the geometric factors.  Non-geometric factors such as user-defined 
size and pre-meshed entities that influence size are also addressed. The 
framework is effective in generating a variety of meshes of industry mod-
els with less computational cost. 

Keywords: Assembly meshing, finite element mesh sizing function, skele-

ton, and pre-mesh 

1 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy under Contract DE-AC04-94AL85000

The submitted manuscript has been authored by a contractor of the United States Government un-
der contract.  Accordingly the United States Government retains a non-exclusive, royalty-free license
to publish or reproduce the published form of this contribution, or allow others to do so, for United 
States Government purposes.



56   W.R.Quadros, V.Vyas, M.Brewer, S.J.Owen, K.Shimada 

1. INTRODUCTION 

Most automatic, unstructured finite element (FE) meshing algorithms do 
not recognize the geometric complexity and other non-geometric factors in
assembly meshing.  Hence, it is difficult to generate a desired 3D mesh of
assemblies in one step, and it is worthwhile to split the meshing process 
into two steps: (1) The analysis of the geometric complexity of the input
assembly and other non-geometric factors, and the generation of functions
that provide element size, anisotropy, and orientation information; (2) 
Generation of a FE mesh using the element size, shape and orientation in-
formation available from the first step.  In this paper, the objective is to
analyze the geometric complexity and other non-geometric factors for gen-
erating element sizing function for assemblies. This paper does not ad-
dress element anisotropy and orientation functions. 

Sizing function plays a crucial role in mesh generation and in finite ele-
ment simulation.  Meshing assembly models is of increasing importance as
simulations are more routinely performed at the system level rather than
the part level. Fig. 1 shows a uniform mesh and a graded mesh of a system
or assembly. The uniform mesh consists of 39,165 elements and the
graded mesh consists of only 17,210 elements, with fine mesh at the holes
(see Fig. 1(b)).  This shows that with a proper sizing function, a high qual-
ity FE mesh with a fewer number of elements can be obtained.  With a
high-quality mesh, more accurate FE analysis results can be obtained. 
With a proper sizing function, the number of elements can be greatly re-
duced; therefore, memory usage and computation time can be greatly re-
duced during analysis.  Consequently, there is great demand for the auto-
matic generation of proper mesh sizing functions for assemblies. 

A computational framework must automate the process of generating 
the mesh sizing function while meeting industry requirements.   Automat-
ing the sizing function generation is important because manual specifica-
tion of the sizing information is tedious and time-consuming, and for com-
plex CAD models it may not be practical to specify the size manually. At 
the same time, the framework should provide the user with op-
tions/controls in generating a variety of meshes to satisfy the industry
needs.  The framework should consider both geometric and non-geometric 
factors that influence mesh sizing. The framework should generate one
common sizing function for all the geometric entities of the assembly.
This common sizing function must provide consistent element sizing
across 1D, 2D, and 3D entities of the assembly. This framework is inde-
pendent of the meshing algorithms that it is used in conjunction with. The



A COMPUTATIONAL FRAMEWORK 57

next section gives a brief review of the literature on previous work in mesh 
sizing. 

Fig. 1. Uniform and Graded As-
sembly Meshes

Fig. 2. Schematic Diagram of the Frame-
work

2. LITERATURE REVIEW 

This section discusses previous meshing approaches with more emphasis
on sizing.  Many of the previous meshing algorithms incorporate some sort
of element/nodal spacing control; however, sizing is integrated with the 
meshing process in many cases. Also, consideration has been given to
mesh sizing for a single part, not an assembly.

In the past, background meshes have been used as a mechanism for stor-
ing sizing function.  In early advancing front methods [1], a background 
mesh consisting of simplicial elements (triangles) was manually con-
structed using sample points.  The generation of a background mesh was 
later automated by generating Constrained Delaunay Triangulation (CDT) 
of a set of vertices. Cunha et al. [2]  automate the placement of the back-
ground mesh nodes on the curves, followed by placement on surfaces, us-
ing curvature and proximity.  Proximity is determined based on the dis-
tance between the facets and the nodes.  Measuring proximity in this
manner is a combinatorial problem and is generally time-consuming and 
less accurate. Owen and Saigal [3] use a natural-neighbor interpolation
method on a background mesh to alleviate the abrupt variations in target 
mesh size.  In their approach, the sizing function is critically dependent
upon node placement in an initial background mesh. 

Preprocess Assembly Model

Input Assembly Model

Generate
Source
Entities

Generate Background Octree Grid 

Interpolate Size on Octree
Grid using Source Entities 

Mesh Generator

Identify
Geometric 

Factors

Identify/Get
Non-Geometric

Factors 

(b) Geometry-adaptive mesh 
(17,210 tets) 

(a) Uniform mesh (39,165 tets)



58   W.R.Quadros, V.Vyas, M.Brewer, S.J.Owen, K.Shimada 

One disadvantage of the background tri/tet mesh is that, while calculat-
ing the mesh size at a point, finding the tri/tet that contains the point is ex-
pensive.  An alternative for storing mesh sizing function is the background 
grid. Pirzadeh [4] uses a uniform Cartesian grid to store the mesh sizing 
function.  However, a uniform grid is not suitable for capturing large gra-
dients of sizing function, and it consumes a large amount of memory.  An-
other class of background grids that have overcome the uniformed grid
limitations are non-uniform hierarchical grids called the “Quadtree” and 
“Octree” [5, 6].  The size of quadtree/octree cells (squares/cubes) depends 
on the subdivision of the bounding box, which is governed by the user-
specified spacing function or a balance condition for the tree.  The draw-
back of this approach is that quadtree and octree are orientation sensitive,
and it is difficult to control the sizing gradient.  Zhu et al. [7] use octree
as a background overlay grid to store mesh sizing, rather than for the pri-
mary purpose of meshing.  Their refinement is not directly based on the
geometry of the domain, but rather on the sizing function gradient. Zhu 
[8] has extended the background overlay grid approach to consider pre-
meshed geometric entities. 

Researchers have also looked at limiting the gradients of sizing func-
tions. Borouchaki et al. [9] present a corrective procedure to control the
size gradation. In their method, gradients of a discretized size function are
limited by iterating over the edges of a background mesh and updating the
size function locally for neighboring nodes. Persson [10] proposes a 
method for limiting the gradients in a mesh size function by solving a non-
linear partial differential equation on the background mesh. 

Another class of meshing approach relevant to this paper uses geometric
skeletons, in particular medial axis transform (MAT) [11] for geometry-
adaptive meshing.  Researchers [12] use the radius function of MAT to
control nodal spacing on the boundary and interior of a 2D domain while
generating a triangular mesh adaptively.  Quadros et. al. use the medial
axis to generate adaptive quadrilateral meshes on surfaces by varying the
width of the tracks using the radius function [13].  They  also use skeletons
in generating the mesh sizing function for surfaces [14] and single solids 
[15], by considering only geometric factors. 

3. PROBLEM STATEMENT 

Given an assembly A in R3and the bounds on mesh size, dmin, and dmax, and
the upper bound on the discrete gradient α.  Develop a framework for



A COMPUTATIONAL FRAMEWORK 59

automatically generating the mesh sizing function s, based on both geo-
metric and non-geometric factors, such that,

1. Mesh size d = s (p) where point p(x,y,z) ∈ A and dmin ≤  d ≤ dmax

2. For any two grid nodes n1 , n2 ∈ O, where O is the background

octree grid of A

 | s(n1.coord()) – s( n2.coord()) | α || n1.coord() - n2.coord() || 

4. OVERVIEW OF THE FRAMEWORK 

The schematic diagram of the computational framework for generating the 
mesh sizing function of assemblies is shown inside the dotted lines in Fig. 
2.  The input assembly consists of many single parts, which are repre-
sented in B-rep format (e.g. ACIS sat file, supported by many commercial
geometric modelers).  The input assembly is preprocessed before passing it
to the mesh sizing framework. Then source entities are generated based on 
the geometric and non-geometric factors to control the size.  The source 
entities provide sizing information, and they are associated with a firmness 
level to facilitate the overriding of sizes among the different factors.  In 
Section 6.1, a systematic study is performed to identify the geometric fac-
tors that must be considered to completely measure the geometric com-
plexity of an assembly.  Section 6.2 discusses the non-geometric factors 
that influence the mesh size.  Next, to store the sizing function, a back-
ground octree grid is generated, instead of a background mesh, by using 
both geometric data and source entities (detailed in Section 7).  Because a 
point containment test is expensive in a background mesh, a background 
grid is used, with a time complexity of O (log N), where N is the number 
of leaf cells.  The final step is to interpolate the sizing function over the 
background grid using the source entities (detailed in Section 8). The in-
terpolation scheme blends the size smoothly while respecting the firmness 
levels of geometric and non-geometric factors.  During mesh generation, 
the target mesh size at a point is interpolated using the size stored at the 
grid-nodes of the octree cell containing that point.

5. PREPROCESS ASSEMBLY MODEL

In the preprocessing stage, an input assembly is made ready for the sizing
function module.  First, the assembly model is repaired, or healed, if nec-



60   W.R.Quadros, V.Vyas, M.Brewer, S.J.Owen, K.Shimada 

essary. To obtain a conformal mesh, imprint and merge operations are
performed on the assembly model. Note that element sizes are affected by
the imprint and merge operations as they change the geometry and topol-
ogy of a domain at the interfaces. In Fig. 3, at ‘A’, the circular curve of
the hole comes in close proximity with another curve, edge of the cube
base. At ‘B’, the cube shown in green shares a common square interface
surface with the circular base, shown in red. As the thickness of the circu-
lar base is much less than that of the cube, a fine mesh is required, even at
the cube near the interface.

Fig. 3. Before and After Imprint
and Merge Operations

Fig. 4. Point, Line, and Triangle Source 
Entities

6. GENERATE SOURCE ENTITIES BASED ON
GEOMETRIC AND NON-GEOMETRIC FACTORS 

A source entity represents the size and gradient at a location due to a geo-
metric or non-geometric factor.  Fig. 4 shows source entities that are de-
fined by: coordinate c[]; size s[]; scope scp[]; and local sizing function f. 
A source entity can be a point, a line segment, a triangle, or a tetrahedron,
defined by c[], s[], and scp[] (See Fig. 4).  The local sizing function f can 
be constant (CONST), linear (LINEAR), geometric progression (GEOM),
exponential function (EXP), etc.  Source entities are also associated with a 
firmness level, l, and a list of incident geometric entities, L.  The influence
of source entities will be restricted to only the geometric entities present in
the list of incident entities, L.  The three levels of firmness are LIMP, 
SOFT, and HARD.  The size is imposed only on the geometric entities of
L.  By controlling the size, scope, local sizing function, and firmness level, 
a variety of meshes can be generated.

Line SourcePoint Source Triangle Source

B
A



A COMPUTATIONAL FRAMEWORK 61

6.1. Generate Source Entities Based on Geometric Factors 
of an Assembly

As it is difficult to analyze the geometric complexity of an assembly, A, at 
once, first the assembly A, embedded in 3ℜ , is decomposed into disjoint
subsets; then the geometric complexity of each subset is analyzed in refer-
ence to the FE mesh generation.  This decomposition of an assembly into
disjoint subsets is for the purpose of theoretical analysis only. 

6.1.1. Disjoint Subsets of an Assembly 

Let an assembly A contain N solids, Si, where i = 1, 2 … N, which do not 
intersect. Here it is assumed that the imprinted and merged assembly A
contains curvature-continuous interfaces and bounadries with no degener-
ate entities.

Fig. 5 shows the anatomy of A, where interior, boundary, and interface 
are denoted by “in”, “bnd”, and “inf”, respectively. The root of the tree is 
assembly A, and the leaf nodes are the disjoint subsets, which are shown in
rectangular blocks.  Fig. 5 shows the disjoint subsets of assembly A, the in-
terior of each solid, in(Sn), the interior of each boundary surface, in(F*m),
the interior of each interface surface, in(F**l), the interior of each bound-
ary curve, in(C*p), the interior of each interface curve, in(C**q),and verti-
ces, Vr.  As the subsets are disjoint, the geometric complexity of each sub-
set is independent of the others.  

Fig. 5. Disjoint Subsets of an Assembly

A

( ) ( )bnd A inf A

R

1
r

r
V

=

L

1

**( )
l

lin F
=

( )in A

N

1

( )
n

nin S
=

M

1

*( )
m

min F
= tC

( )tin C ( )tbnd C
P

1

*
( )

p
pin C

=

Q

1

**
( )

q
qin C

=

( ( )) ( ( ) ( ( )) ( ( ))in bnd A bnd bnd A bnd inf A in inf A+ +



62  W.R.Quadros, V.Vyas, M.Brewer, S.J.Owen, K.Shimada 

6.1.2. Geometric Factors for Each Disjoint Subset 

The geometric complexity of each disjoint subset is analyzed in reference
to FE meshing to determine the geometric factors [14, 15]. The only geo-
metric factor essential to capture the complexity of the interior of a solid,
in(S), is 3D-proximity. 3D-proximity implies proximity between the verti-
ces, curves, and surfaces that bound in(S), which is a global measure of the 
geometric complexity of in(S).  The geometric factors which capture the 
complexity of the interior of a boundary surface, in(F*), or interface sur-
face, in(F**), are the 2D-proximity between its boundary curves and verti-
ces, and curviness.  2D-proximity is a global measure, and curviness is a 
local measure of geometric complexity.  The geometric factors of the inte-
rior of a boundary curve, in(C*) or interface curve, in(C**), are the 1D-
proximity between end vertices of a curve, curviness and twist [14]. As in-
terior of a curve is a 1D entity embedded in 3D space, these three geomet-
ric factors are required  in order to completely measure its complexity.  No 
geometric factors are required for a vertex V; a FE node at each vertex is 
sufficient to represent the vertex in a FE model.

In the beginning of Section 6.1.1 it was assumed that curves and sur-
faces were curvature continuous, but cusps may exist (such as the tip of
cone), and sharp bends in the curves and surfaces, where tangent and cur-
vature vector are not well defined.  These points, curves, and regions 
should be considered as hard points, curves, and regions [14].  These hard 
entities are not addressed in the remainder of this paper.

6.1.3.  Tools to Measure Geometric Factors of Each 
Subset

The following paragraphs discuss the tools needed to measure the geomet-
ric factors of each subset of A.  In this paper, disconnected skeletons are
proposed as the tools to measure the proximity in in(A), in(F*), and 
in(F**), more accurate tools than previous methods used by researchers. 

A 3D-skeleton of an assembly is extracted and used as the tool to meas-
ure 3D-proximity in in(A).  On the PR-octree, the 3D-skeleton of an as-
sembly is extracted by propagating a wave front from the boundary sur-
faces and the interface surfaces towards the interior of an assembly, similar
to that of extracting the 3D-skeleton of a single solid [16].  The three im-
portant phases of the wave propagation are: initiating the initial wave front 
(see Fig. 6(a)), propagating the wave front, and terminating the wave.
Note that in Fig. 6(a), the wave is propagated in both directions at the in-
terfacial surfaces, whereas at the boundary surfaces the wave is only
propagated inward.  The skeleton points are generated where the wave



A COMPUTATIONAL FRAMEWORK 63

terminates. The distance traveled (also called the radius) by the wave at the 
skeleton points measures 3D-proximity.  In Fig. 6(b), the skeleton points
where the wave has traveled the least are shown in red and the furthest in 
blue.

Fig. 6. Initial Front and 3D-skeleton

A disconnected skeleton of a surface provides local thickness informa-
tion, and it is used as a tool to measure the proximity in in(F*) and
in(F**).  A disconnected 2D-skeleton of the surfaces is generated by com-
bining the concept of medial axis transform (MAT) and chordal axis trans-
form (CAT) [14].  The skeleton generated using this method is computa-
tionally efficient and is sufficiently accurate for the purpose of this work. 

Fig. 7 shows how a skeleton effectively measures changes in surface 
complexity before and after imprint operations.   Fig. 7(a) shows the whole 
assembly model and the magnified view of a bolt and a nut. The 2D-
skeleton of the top surface of the flange before the imprinting is shown in
Fig. 7(b).  Note that after imprinting the circular base of the hexagonal
bolt-head on the top surface of the flange, a thin circular ring appears at the 
holes (Fig. 7(c)).  Thus the 2D-skeleton measures the proximity between 
the outer and inner circles of these thin circular rings.

(a) An assembly model (b) 2D-skeleton before imprinting (c) 2D-skeleton after imprinting 

Fig. 7. 2D-skeleton Before and After Imprint

Other tools used to measure other geometric factors mentioned in Sec-
tion 6.1.2  are briefly discussed here. The curviness in in(F*) and in(F**)
is measured using the minimum principal radius of curvature[2, 3, 14, 17]. 

(b) Front view of discon-
nected 3D-skeleton

(c) Isometric view of dis-
connected 3D-skeleton 

Interface

(a) Direction of initial wave
front 



64  W.R.Quadros, V.Vyas, M.Brewer, S.J.Owen, K.Shimada 

The proximity between the end vertices in in(C*) and in(C**) is measured 
using the length of a curve.   The curviness of in(C*) and in(C**) is meas-
ured using the curvature of a curve [2, 7, 14].  The twist of in(C*) and 
in(C**) is measured using torsion [14].

6.1.4.  Generate Source Entities using the Tools 

Source entities are generated using the tools for controlling the size due to
geometric factors.  The source entities cover the disjoint subsets in order to 
reflect the influence of the geometric factors. All the source entities gen-
erated based on the geometric factors will be of LIMP firmness level, to 
give high precedence to non-geometric factors.  The following paragraphs
explain how to generate the source entities using skeletons and other tools. 

A 3D-skeleton is converted into point sources with a size and local siz-
ing function given by Equation (1).  The num_of_layers controls the num-
ber of layers of finite elements across the thickness.  A LINEAR local siz-
ing function is used with end_factor = 0.1 to have a slightly larger size at
the interior of in(S).  The coordinate, c, and the scope, scp, of a source 
point is set equal to the skeleton point coordinate and the radius, R, respec-
tively.  Note that size due to skeleton-based source points are interpolated
over the entire grid to cover in(A).

( )2 , ( ) - _
_ _

R rs f r s s end factor
num of layers scp

= = × × (1) 

Triangle sources can be generated using the 2D-skeleton points to con-
trol size over in(F*) and in(F**).  The 2D-skeleton radius can be interpo-
lated over the facets (obtained from the geometry engine) to generate tri-
angle sources (Equation 1).  A GEOM function is used as local sizing
function f , as given in Equation (2) [8].  In Equation (2), r represents the 
distance between a point p (inside the scope) and its projection p’ on the
triangular source.  Growth factor g is set to 1.2, and s0 is the size at p’,
which is calculated using linear interpolation of sizes on vertices.  Thus the
size on a source entity is influenced by sizes on the vertices; the sizes at
surrounding regions inside the incident entities are controlled by the
growth factor.  Note that at interfaces in(F**), the size is radiated inside
the incident entities L.

( )

( )
0

0

1
ln

( ) ,
ln

n

r g
g

s
f r s g n

g

−
+

= × = (2) 

The GEOM function is used at both the triangle and the line sources
(obtained from facets) on the surfaces and curves, respectively, to radiate



A COMPUTATIONAL FRAMEWORK 65

the size into incident entities. In in(F*) and in(F**), triangular surface 
curvature-based sources are generated using minimum principal radius of 
curvature and maximum spanning angles [2, 14, 17] (Fig. 9(c)). In in(C*)
and in(C**) line sources are generated using the tools used for measuring
geometric factors of curves [14] (Fig. 9(d)). 

6.2. Generate Source Entities Based on Non-Geometric 
Factors

The following paragraphs discuss non-geometric factors influencing mesh 
size during simulation of complex assemblies. The firmness level of the
source entities can be set depending on the requirement. 

User-Defined Size: Source entities are also generated based on the user’s
input.  Experienced users in industry may prefer specific sizes at certain 
regions based on their knowledge and experience.  The framework can 
handle user-specified sizes on solids, surfaces, curves, and vertices.  Users
can control the size by specifying size, scope, and local sizing function.
Facets of the specified surfaces and curves are extracted, then, based on the
user’s input, triangle, line, and point sources are generated.  The firmness 
level is set to SOFT to override the sizing functions of geometric factors. 

Pre-Meshed Entities: The source entities due to pre-meshed entities are 
generated to obtain a smooth transition in element size at the pre-meshed 
entities. Pre-meshed entities often appear while meshing assembly models;
they could be surfaces or curves.  The 1D/2D elements of the pre-meshed 
entities are converted into line/triangle sources.  Edge lengths of the
1D/2D element are used as size on the source entities, and the growth fac-
tor for the GEOM function is set to 1.2. The firmness level is set to SOFT.

Meshing Scheme: Some meshing schemes require a specified number of 
elements/intervals on the boundary curves.  For example, quad meshing 
algorithms require an even number of 1D elements overall on the boundary
curves of a surface.  Also, in mapped surface meshing schemes the same
number of intervals is required on pairs of opposite curves.  These con-
straints can be imposed by artificially generating the line sources on a 
curve and by setting the firmness level to HARD.

Previous Analysis Results: Previous analysis results can be incorporated
into the sizing function by generating source entities.  For example, in a
region of stress concentration, the size of source entities can be calculated 
based on the stress; local sizing function can be controlled based on the



66  W.R.Quadros, V.Vyas, M.Brewer, S.J.Owen, K.Shimada 

stress gradients, which can then be used in remeshing a model for the next 
iteration of analysis. 

Boundary Conditions: At a boundary condition, the elements’ sizes can
be controlled before running the analysis by generating source entities us-
ing the domain knowledge of the analysis.  For example, consider a point
load boundary condition, which is frequently encountered in struc-
tural/solid mechanics problems.  The element size can be controlled using 
a suitable local sizing function based on radial stress distribution.

7. GENERATE BACKGROUND OCTREE GRID

The background octree grid of an assembly is first generated using  geo-
metric information and then refined based on source entities.  A PR-Octree
is generated using graphics facets because it captures geometric features 
and provides a suitable lattice for storing a sizing function[15].  The verti-
ces and centroids of facets of an assembly model are given as input point
list while generating a PR-Octree starting from the bounding box of the as-
sembly.  The graphics facets capture the boundary curvature and small fea-
tures, and hence small-sized facets exist at high curvature regions and at
fine features, which results in finer cells in those regions. The PR-Octree 
is further subdivided based on the size and sizing gradient of source enti-
ties. The cells are further subdivided until only one level of depth differ-
ence is maintained between the adjacent cells; this ensures a smooth transi-
tion in grid cells for storing the sizing function. 

The octree cells intersecting with the boundary facets are efficiently
identified using the separating axis theorem [18], and these boundary cells 
and their nodes are colored gray. Then inner nodes and cells are colored 
black. Octree cells and nodes lying outside the assembly are removed to 
reduce memory usage and computational time.

8. INTERPOLATE SIZE ON BACKGROUND GRID USING 
SOURCE ENTITIES

Interpolating mesh size over the background octree grid using source enti-
ties is discussed in two steps.  Section 8.1 explains how to interpolate siz-
ing function due to a single factor, geometric or non-geometric. In Section 
8.2, the blending of the sizing functions, due to different factors based on
firmness level, is explained. 



A COMPUTATIONAL FRAMEWORK 67

8.1. Interpolate Sizing Function of a Factor

First, every source entity is linked with the grid-nodes that fall inside its
scope.  The linking process starts from a set of initial nodes of the octree 
cells that intersect with the source entity.  The grid-nodes are visited in
breadth-first traversal, starting with the initial nodes, until all the grid-
nodes contained inside its scope are linked with the source entity.

The size at a grid node n , due to a factor k, is interpolated by taking the 
weighted sum of the sizes determined by the local sizing function f of m
source entities, linked to that grid-node, as given in Equation (3).  Here, ri
is the distance between the ith source entity and grid-node n, and fi(ri) is the 
size determined by the local sizing function of the ith source entity.  k could 
be any geometric or non-geometric factor.  This ensures that a source en-
tity that is closer and has a smaller size has a greater influence on the grid-
node.

8.2. Blend Sizing Functions of Geometric and Non-
Geometric Factors

This section gives details of blending different sizing functions.  The firm-
ness level is used in overriding a sizing function of one factor with that of 
another.  All the sizing functions due to geometric factors have a firmness 
level of LIMP, and the sizing functions due to non-geometric factors have
firmness level of either SOFT or HARD, depending on the firmness level
of a source entity (see Section 6.2).

As all the geometric factors have LIMP firmness, the final size s at each 
grid-node is calculated as given in Equation  (4), where k represents differ-
ent geometric factors. w are the weights, which are initially set to 1.0. 
These weights can be controlled to achieve variation in meshes.  The scale
is used to control the overall coarseness of the mesh. 

{ }k kmins s w scale= ⋅ ⋅ (4)

The sizing function generated by combining all the geometric factors
can be overridden by the sizing function of non-geometric factors, as the

2 2i m
i_dist i_size i i i

k i i i_dist i_sizej m j m
i 1

2 2
j 1 j 1j j j

1 1
W W ( )s ( ) ,  W ,  W

1 12
( )

r f rf r

r f r

=

= =
=

= =

+
= × = = (3)



68  W.R.Quadros, V.Vyas, M.Brewer, S.J.Owen, K.Shimada 

non-geometric factors have a higher firmness level.  The maximum size,
dmax, and minimum size, dmin, are enforced by trimming the sizing function
stored on the background grid. 

Smoothing techniques are used to alleviate the abrupt gradients caused 
by combining the sizing functions of the geometric factors, and by overrid-
ing the sizing function due to non-geometric factors.  The concepts of digi-
tal filters used in smoothing 2D images are used here in smoothing the
mesh sizing function stored on the octree.  First two iterations of median
filter are used to remove the sharp gradients, and then a modified mean fil-
ter is used iteratively to smooth the gradients.  During mesh generation, tri-
linear interpolation is used to calculate the target mesh size at p, using the
size at the grid-nodes of the cell containing p.  Thus the target mesh size is 
calculated in O(max_depth), where max_depth is the maximum depth of
the octree. 

9. RESULTS AND DISCUSSION

The proposed framework has been implemented in C++ within CUBIT, a
finite element mesh generation toolkit by Sandia National Laboratories.
The proposed framework has been tested on industrial assembly models
and results obtained on three such models are shown in Fig. 8 to Fig. 10 
(original models courtesy of Ansys, Inc.).  

Fig. 9 shows the components of the proposed framework by considering 
only geometric factors in a twelve-volume assembly.  Fig. 9(a) and Fig.
9(b) show 16,037 3D-skeleton points and 16,474 2D-skeleton points,
which are used as tools to measure 3D-proximity and 2D-proximity, re-
spectively.  Fig. 9(c) and Fig. 9(d) show 7,405 triangle sources and 5,320 
line sources on surfaces and curves, respectively.  Fig. 9(e) shows the
mesh size on the background octree grid of min_depth = 5 and max_depth
= 7 (as in all three models) using a color scale.  Fig. 9(f) shows the geome-
try-adaptive mesh containing 83,584 tet elements. 

Fig. 8(b) shows a mesh generated by combining both the geometric fac-
tors and sizing based on a pre-meshed surface (see Fig. 8 (a)) in a four-
volume assembly. The number of tris in the pre-mesh and average edge
length of the tris were 787 and 2.00 respectively.  787 triangle sources
were generated using the tris of the pre-meshed surface with sizes calcu-
lated based on the edge lengths of tris.  A GEOM local sizing function 
with growth factor = 1.2 was used.  The sectional view in Fig. 8(b) shows
a smooth transition in the size of the tet elements at the pre-meshed sur-
face. The tet mesh shown in Fig. 8(b) consisted of 44,462 tets. 



A COMPUTATIONAL FRAMEWORK 69

Fig. 10 shows the meshes generated by combining the geometric factors
and a user-defined size in a two-volume assembly.  Fig. 10(a) contains
68,325 tets that are generated using geometric factors only.  Fig. 10(b) 
contains 73,289 tets that are generated by incorporating user-defined size
specified on the top surface.  The user has requested four layers of tet ele-
ments of size 2.5.  Triangle sources were generated by extracting the ACIS
facets with size = 2.5, scope = 10.0, and a CONST local function.

For the assembly in Fig. 9, the maximum and minimum sizes at the grid
nodes were 37.20 and 1.29 respectively, which were within the user speci-
fied bounds dmax = 40, and dmin = 1.0.  Similarly, maximum and minimum 
sizes were 15.05 and 1.32, respectively, for Fig. 8.  In Fig. 9, maximum 
and minimum sizes were 40.68 and 1.38, respectively.

Table 1 shows the computational time taken by the components of the
framework in generating sizing function for the assembly models shown in
Fig. 8 to Fig. 10.  The timings were measured in emachines M6811 note-
book.  From Table 1 it is observed that interpolation has taken the most
time in all three models.  Note that octree generation time in assemblies 
shown in Fig. 8, Fig. 9, and Fig. 10 is proportional to the number of graph-
ics facets extracted (2,927, 12,161, and 7,346 facets, respectively).  There 
is a strong correlation between number of source entities and computa-
tional time for interpolation.  The number of source entities in the three 
models were 11,211, 45,236, and 44,957. 

Table 2 shows that the approach used in extracting disconnected 3D and
2D skeletons are computationally efficient.  The 2D- and 3D-skeleton
times are accompanied by their generation times relative to the total source 
entity generation times for each assembly.  The 2D-skeleton times are 
much larger than the 3D-skeleton times due to a larger number of surfaces 
than volumes in the models.  For example, the model in Fig. 10 contains
only two volumes but has 186 surfaces. 

Table 1. Computational Time (sec) in Generating Mesh Sizing Function

Figure 8 Figure 9 Figure 10
Octree Generation 1.689 4.438 3.999
Source Entity Generation 0.702 2.547 2.501
Interpolation 2.188 7.453 9.000
Total 4.579 14.438 15.500

Table 2. Computational Time (sec) in Generating Disconnected Skeletons

Figure 8 Figure 9 Figure 10
3D-Skeleton 0.062 (8.9%) 0.234 (9.2%) 0.282 (11.3%)
2D-Skeleton 0.312 (44.4%) 1.094 (43.0%) 0.782 (31.3%)



70  W.R.Quadros, V.Vyas, M.Brewer, S.J.Owen, K.Shimada 

10. CONCLUSION 

In this paper a computational framework for generating a mesh sizing 
function for assembly meshing is proposed.  The framework generates a
sizing function by considering both geometric and non-geometric factors.
A systematic study has been performed to determine the geometric factors
that influence the mesh size. Disconnected 3D and 2D skeletons are ex-
tracted and used for measuring the proximity.  The proposed framework is
computationally efficient and it has been tested on many industry models 
to verify the effectiveness.

(a) Assembly model with a pre-meshed surface (b) Sectional view of a tet mesh generated using
geometric factors and a pre-meshed entity

Fig. 8. Mesh Sizing due to Geometric and Non-geometric Factors (pre-meshed entity)

(a) Disconnected 3D-skeleton (b) Disconnected 2D-skeleton (c) Triangle surface curvature
sources 

(d) Line sources on curves (e) Size on background octree grid (f) Geometry-adaptive mesh 

Fig. 9. Components of the Framework 



A COMPUTATIONAL FRAMEWORK 71

REFERENCES

[1] R. Lohner and P. Parikh, "Generation of Three-Dimensional Un-
structured Grids by the Advancing Front Method," AIAA-88-0515,
1988.

[2] A. Cunha, S. A. Canann, and S. Saigal, "Automatic Boundary Siz-
ing For 2D and 3D Meshes," AMD Trends in Unstructured Mesh
Generation, ASME, vol. 220, pp. 65-72, 1997.

[3] S. J. Owen and S. Saigal, "Neighborhood Based Element Sizing
Control for Finite Element Surface Meshing," Proceedings, 6th In-
ternational Meshing Roundtable, pp. 143-154, 1997.

(a) Graded mesh based on only
geometric factors

(b) Graded mesh based on 
geometric factors and a user

defined size

(c) Enlarged view of the mesh
at a user-defined surface

Fig. 10. Mesh Sizing due to Geometric Factors and a Non-Geometric Factor (user
defined size)

[4] S. Pirzadeh, "Structured Background Grids for Generation of Un-
structured Grids by Advancing-Front Method," AIAA, vol. 31, 1993. 

[5] W. C. Tracker, "A Brief Review of Techniques for Generating Ir-
regular Computational Grids," Int. Journal for Numerical Methods 
in Engineering, vol. 15, pp. 1335-1341, 1980.

[6] M. S. Shephard, "Approaches to the Automatic Generation and
Control of Finite Element Meshes," Applied Mechanics Review,
vol. 41, pp. 169-185, 1988.

[7] J. Zhu, T. Blacker, and R. Smith, "Background Overlay Grid Size 
Functions," Proceedings of 11th International Meshing Roundta-
ble, pp. 65-74, 2002. 

[8] J. Zhu, "A New Type of Size Function Respecting Premeshed En-
tities," 12th International Meshing Roundtable, 2003.

6th Inter-[9] H. Borouchaki and F. Hecht, "Mesh Gradation Control,"
national Meshing Roundtable, 1997.



72  W.R.Quadros, V.Vyas, M.Brewer, S.J.Owen, K.Shimada 

[10] P.-O. Persson, "PDE-Based Gradient Limiting for Mesh Size Func-
tions," Proceedings, 13th International Meshing Roundtable, pp. 
377-388, 2004. 

[11] H. Blum, "A Transformation for Extracting New Descriptors of
Shape," Models for the Perception of Speech and Visual Form
Cambridge  MA The MIT Press, pp. 326-380, 1967. 

[12] V. Srinivasan, L. R. Nackman, J. M. Tang, and S. N. Meshkat,
"Automatic Mesh Generation using the Symmetric Axis Transfor-
mation of Polygonal Domains," Proc. IEEE, vol. 80(9), pp. 1485-
1501, 1992. 

[13] W. R. Quadros, K. Ramaswami, F. B. Prinz, and B. Gurumoorthy,
"Automated Geometry Adaptive Quadrilateral Mesh Generation
using MAT," Proceedings of ASME DETC, 2001. 

[14] W. R. Quadros, S. J. Owen, M. Brewer, and K. Shimada, "Finite 
Element Mesh Sizing for Surfaces Using Skeleton," Proceedings, 
13th International Meshing Roundtable, pp. 389-400, 2004.

[15] W. R. Quadros, K. Shimada, and S. J. Owen, "Skeleton-Based 
Computational Method for Generation of 3D Finite Element Mesh
Sizing Function," Engineering with Computers, 2004. 

[16] W. R. Quadros, K. Shimada, and S. J. Owen, "3D Discrete Skele-
ton Generation by Wave Propagation on PR-Octree for Finite Ele-
ment Mesh Sizing," ACM Symposium on Solid Modeling and Ap-
plications, 2004. 

[17] S. J. Owen and S. Saigal, "Surface Mesh Sizing Control," Interna-
tional Journal for Numerical Methods in Engineering, vol. 47, pp. 
497-511, 2000. 

[18] D. Eberly, "Intersection of Convex Objects: The Method of Sepa-
rating Axes," Magic Software, Inc., 2003.


